Game Theory - Intro

- What is Game Theory?

A branch of mathematics (decision theory), which formalizes games and defines solutions to them

- What is a Game?
- It is a decision problem, where decisionmaker's payoff (profit) may depend not only on his own decision, but also on the decisions made by other decision makers

Defining a game

- Formally, a game is a set of 4 elements:
- a set of players (can even be infinite)
- a set of rules (allowable actions and sequencing of actions by each player)
- a payoff function (which assigns payoffs for each player as a function of strategies chosen)
- informational structure (what players know at each point in the game)

General Assumptions

- Standard GT assumes that players are:
- selfish: maximize their own payoffs and do not care about the opponent's payoffs
- rational: they understand the game and can determine the optimal strategy
- expected-utility maximizers: in uncertain situations players they base their choices on (von Neumann-Morgenstern) expected utility
- share common knowledge about all aspects of the game
- in addition, it is often assumed that players do not communicate, cooperate or negotiate, unless the game allows it explicitly

More on Assumptions

- All of the above are simplifying assumptions, i.e. they rarely hold in reality
- There is a lot of research on games with altruistic players, players with boundedrationality or non-expected-utility maximizers or even non-decision makers (e.g. Evolutionary Game Theory)
- A whole separate branch of decision theory deals with cooperative games (Cooperative Game Theory)

More on Common Knowledge

■ "As we know, there are known knowns. These are things we know we know.

- We also know, there are known unknowns. That is to say we know there are some things we do not know.
- But there are also unknown unknowns, the ones we don't know we don't know".
- D.H. Rumsfeld, Feb. 12, 2002, Department of Defense news briefing
- Common knowledge means that there are no unknown unknowns.

Incomplete Information vs Asymmetric Knowledge

- Modeling asymmetric knowledge (unknown unknowns) is difficult
- Instead, Game theorists assume that if a player doesn't know something, she has some initial beliefs about it and these beliefs are commonly known (there are only known unknowns)
- Games with known unknowns are called games with incomplete (imperfect) information.

History of Game Theory

- Cournot (1838) - quantity-setting duopoly model
- Bertrand (1883) - price-setting duopoly model
- Zermelo (1913) - the game of chess
- von Neumann \& Morgenstern (1944) defined games, min-max solution for 0-sum games
- Nash (1950) - defined a the equilibrium and the solution to a cooperative bargaining problem

'Nobel' prize winners for

 Game Theory (Economics)- 1994 - John Nash, John Harsanyi, Reinhard Selten
- 1996 - James Mirrlees, William Vickrey
- 2005 - Robert Aumann, Thomas Shelling
■ 2007 - Leonid Hurwicz, Eric Maskin, Roger Myerson,

Normal Form Games

- Simple games without „timing", i.e. where players make decisions simultaneously. Dynamic games can be reduced into a normal form.
- The set of strategies is simply the set of possible choices for each player.
- Normal (Strategic) Form Game consists of the following elements:
- - $N=\{1, . ., n\}$ the finite set of players
- $-S=\left\{S_{1}, . ., S_{n}\right\}$ the set of strategies, including a (possibly infinite) set for each player
- $-U\left(s_{1}, . ., s_{n}\right)$ the vector of payoff functions, where $s_{i} \in S_{i}$ for each player
- If the set of strategies is small and countable (typically 2-5), then we can use a game matrix to represent a normal-form game

Game Matrix

■ Example 1: Advertising game

		Player 2	
		A	N
Player	A	40,40	60,30
1	N	30,60	50,50

- $N=\{1,2\}$
- $S=\left\{S_{1}, S_{2}\right\}$ and $S_{1}=S_{2}=\{A, N\}$
- $\mathrm{U}\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right)=\left\{\mathrm{u}_{1}\left(\mathrm{~s}_{1}, \mathrm{~s}_{2}\right) ; \mathrm{u}_{2}\left(\mathrm{~s}_{1}, \mathrm{~s}_{2}\right)\right\}$
- $u_{1}(A, A)=40 ; u_{1}(A, N)=60 ; u_{1}(N, A)=30 ; u_{1}(N, N)=50$
- $u_{2}(A, A)=40 ; u_{2}(A, N)=30 ; u_{2}(N, A)=60 ; u_{2}(N, N)=50$

Mixed Strategies

- In any game, but especially in games such as above (with countable strategies), it is often useful to consider mixed strategies
- Mixed strategies are a probability distribution over the set of (pure) strategies S, a convex extension of that set.
- The set of mixed strategies is denoted by $\sum=\left\{\sum_{1}, \Sigma_{2}\right\}$, a single strategy is of player i is denoted by $\sigma_{i} \in \sum_{i}$
- We simply allow the players to make a random choice, with any possible probability distribution over the set of choices.

Dominance

- $\sigma_{-i}=$ vector of mixed strategies of players other than i
- Def:

Pure strategy s_{i} is strictly dominated (never-bestresponse), if for every σ_{-i} there is a strategy $z_{i} \in \sum_{i}$ of player i s.t. $u_{i}\left(\mathrm{z}_{\mathrm{i}}, \sigma_{-i}\right)>\mathrm{u}_{i}\left(\mathrm{~s}_{\mathrm{i}}, \sigma_{-i}\right)$

- There is also a notion of weak dominance, where it is enough that the strategy z_{i} is never worse (but doesn't have to be always better) than s_{i}
- Iterated elimination of dominated strategies
(IEDS) is a simple procedure that provides a solution to many normal-form games
- Step 1: Identify all dominated strategies
- Step 2: Eliminate them to obtain a reduced game
- Step 3: Go to Step 1

Iterated Elimination of Dominated Strategies

- In the Advertising game, the IEDS solution is (A, A)
- What about the game below?

	Player 2		
		L	R
	U	3,1	0,2
Player 1	M	0,0	3,1
	D	1,2	1,1

- D is dominated by a mixed strategy (e.g. 50-50 mix od U-M), then L is dominated by R, then U by M, solution: $M-R$

